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STRUCTURAL RESPONSE TO DISCRETE AND CONTINUOUS GUSTS OF AN AIRPLANE
HAVING WING BENDING FLEXIBIIXTY AIW) A CO~ELATION

OF CALCULATED AND FLIGHT RESULTS 1‘

By Jom C. HOUSOLTand ELDONE. KORDES

An analysis is made
an airplane having tlw

SUMMARY

Of the 8ti%CtW?d re3pon8e to gusi%of
degree8 of freedom of mrtical motion

and wkg bending-w~y and- b-h pararnekr8 are eatab-
Eshed. A cmuwnieniand accuxate nu?nericuJ801?Wii07iof the
response equatiom is developedfor the cme of diacrd~
encounta, an exuct solution h made for I!L58impler caae of
continwou-tinwaoidal-gwt encounter, and the procedure i8
owthwd for treuting the more %aJistti condition of continw
random atmosplwric turbwlm, bawd on the ma%oda of
generalized harmonic analyti.

(?Orrektion atudh betweenj?ight and caku.kted remdi%are
t?un gwen i%evalwatcthe injke-nce of wing bendingj?exibility
on the 8tructuralrespmweto guw%of two twin-engine tramport.s
and em? four-engim bomber. It is 81wwn i!kt calculated
reiwdtsobtained by kearw of a dtkm%pst approach reveal h
general nature of thz jkxibility e$ects and lead i% qual.itatwe
correlation & j’ligh.t redt.v. In contrast, cu.kuktti by
means of the continwmwtuxbtie approazh shmo good
quantitutwe correlation WW $ight remd.ikand indicate a much
greater degree of rtxolwtim of tiwdity eJects.

INTRODUCTION

In the clcsignof aircraft the condition of gust encounter has
become critical in more and more instances, mainly because
of increased flight spe~ and because of configuration
changca. Aircraft designe~ have therefore placed greater
emphasis on obtaining more nearly applicable methods for
predicting the stressesthat develop. As a rwult, the number
of papera on this subject has signii3cantly increased. (See,
for example, refs. 1 to 16.) Many of the papem have treatad
the airplane as a rigid body and in so doing have dealt with
either the degree of freedom of vertical motion alone (refs.
1 to 4) or with the degrew of freedom of vertical motion and
pitch (refs. 3, 5, and 6). In the main, these rigid-body
treatments tacitly involve the concept of “discrete,” “iso-
lated” gusts, but more recently steps have been taken to
treat the more realistic condition of continuous-turbulence
encounter in an explicit manner (see refs. 6 to 9).

In addition to rigid-body effects, one of the more import-
ant items that has been of concern in the consideration of
gust penetration is the influence that wing flexibility has on
structural rcaponse. This concern has two main aspects:

(1) that including wing flexibility may lead to the calculation
of higher stressesthan would be obtained by rigid-body treat-
ment of the problem and (2) that wing flexibility may intro-
duce some error when an airplane is used as an instrument for
measuring gust intensity. Thus, several papers have also

‘ appeared which treat the airplane as a flexible body. In
most of these papers the approach used involves the develop-
ment of the structural response in terms of the natural modes
of vibration of the airplane (refs. 10 to 15). In othem the
approach is more unusual, as, for example, reference 16 which
deals with the sinmkmeous treatment of the conditions of
equilibrium between aerodynamic forces and structural de-
formation at a number of points along the wingspan. What-
ever the approach, however, thgse flexible-body analyseshave
two main shortcomings. They too have adhered to the con-
cept of simple-gust or discrete-gust encounter (ref. 10 is an
exception) and also they are not very well suited for making
trend studies without excessive computation time.

The intent of the present report is to shed further light
upon the case of gust penetration of an airplane having the
degrees of freedom of verticil motion and wing bending. It
has several objective-s: (1) to establish some of the basic pa-
rameters that are involved when wing bending flexibili~ is
included, (2) to develop a method of solution -whichis fairly
well suited for trend @udics without excessive computation
time, (3) to evolve methods for treating continuous turbu-
lence as well as discrete gusts, and (4) to show the.degree-of
correlation that can be obtained between flight-test and an-
alytical results and, through this correlation, to assesshow
well flexibility effects may be analyzed. In effect, this report
is a composite of the discrete-gust studies made jointly by
the authors in referenw 11 and 12 and of the continuous-
turbulence studies made by the first author in reference 10
and in unpublished form.

The report is developed as follows: The equations for re-
sponse (including accelerations, displacements, and bending
moments) are derived and the basic parameters outlined. A
simple solution of these equations follows for both discrete-
gust encounter and for continuous-sinusoidal-gust encounter.
Next, the procedure for treating continuous atmospheric tur-
bulence is outlined. Then, the correlation studk involving
a comparison of flight-test results with the calculated results
obtained for both discrete-gust and continuous-turbulence
conditions are given.

:Supm.fxksNAOATN3WbyJohnO. Honhlk 19S3;Sk contahsessanthlmaterialfromNAOATN 27Rby JohnO.Honboltand EldonE. ~ordw,1952,~d NAOATN2%37
by EldonE.KordaondJohnO.HonMt,19s3.
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SYMBOLS

slope of lift curve
deflection coefficient for nth mode, function of

time alone
Itspect ratio of wing
span of wing
chord of wing
chord of wing midspan
see equation (23b)
Young’s modulus of elasticity

nondimensional gust force,
J

;$+(s–u)du -

external applied load per unit span -
acceleration due to gravity
distance to gust peak, ohorcb
bending moment of inertia

reduced ~equency, ~v

nondimensional .bending-moment factor

wave length
aerodynamic lift per unit span of wing due to

fglst
m.rodynamic lift per unit span of wing due to

vertical motion of airplane
mass per unit spag of wing
net incremental bending moment at wing

station j

ilI,*=
J

: cwJy-yj)dy

IL&a=s~~mws~—yj)dy

tin ‘-

2.
P
rl, r2,r3

s

s
t, T
T(u), 2’($2)
u
u
17

W-
W

W*

TJ

generalized mass of nth mode
incremental number of g acceleration
see equation (68a)
load intensity per unit spanwise length
see equations (18), (24), and (13)

distance traveled, ~ t, half-ohords

wing area
time
frequency-response function
vertioal velocity of gust or random disturbance
mtium vertical velocity of gu9t
forward VdOOi@ of flight
total weight of airplane
deflection of elastic As of wing, positive

upward
deflection of elastic axis in nth mode, given in

terms of unit tip deflection
distance along wing measured from airplane

center line

0)=

Subscripts:

w

f
F
‘i
j
m
n
1?
o
T

Ffotation:

II
[1

FOR AERONAUTICS

~7
response coeEcient baaed on a%,— an

Ul?o

second derivative of G with respect to s
second derivative of ZIwith respect to s
absolute value of center-line deflection of

fundamental mode in terms of unit tip
displacement

distance interval, half-chords; also, strain
nondimensional bending-moment parameter,

SM.m

(I)1CO
reduced-frequency parameter, ZV

nondimensional relative-density pmmmter,
SM.
aPc#7

mass density of air
standard deviation; also, distmce traveled,

2V
T,half-chor,ds

x
function which denotes growth of lift on on

airfoil following a sudden change in angle of
attack (Wagner function)

power-spectral-density functions
function which denotea growth of lift on rigid

W@ ~tem a sharp-edge gust ~iissner
function)

circular Ilequency
natural circular frequency of vibration of nth
‘ mode

experimental
flexible
fus~age
input
spanwise station
number of &stance intervals traveled
natural modes of vibration
nodal
output
rigid
theoretical

column matrix when used in matris equations
square matrix

Dots are used to denote derivatives with respec~ to time;
primes denote derivatives with respect tos or u; a bar above
a quantity denotes the time average; and vertical bars about
a quantity denote the modulus.



RESPONSETO DISCRETEAND”CONTINIJOUSGUSTSOF

ANALYSISOF RESPONSETO ARBITRARYGUSTS
EQUATIONSFORSTRU~AL RESPONSE

The following mm.lysistreats the problem of determinhg
the stressesthat develop in an airplane flying through vertical
gusts on the assumption that the airplane is free to respond
only in vertical motion and wing bending. The case of the
transient response to arbitrary gusts is considered tit.
A subsequent section is then devoted to the case of random
disturbances in which explicit consideration is given the
continuous nature of atmospheric turbulence.

Equations of motion,—It is convenient to treat the problem
simply as one of determiningg the elastic and translational
response of a free-free elastic beam subject to arbitrary dy-
namic forces. l’or dynamic forces of intensity F per unit
length, the differential equation for wing bending is, if struc-
tural damping is neglected,

(1)

where w is the deflection of the elastic W& referred to a fixed
reference plane. The task of determining the deflection that
resultsfrom the applied forces l’maybe handled conveniently
by expressing the deflection in terms of the natural free-free
vibrational modes of the wing.

The wing deflection is thus assumed to be given by the
equation

w=aQwo+&wl+Gm+ . . . (2)

where the an’s are functions of time alone, and the wn’s
represent the deflec~ions of the various modes along the
elastic axis of the wing, each being given in terms of a unit
tip deflection. In equation (2), w represents the rigid-body
mode and has a constant unit displacement over the span;
the other w’s are elastic-body modes which satisfy the diiler-
entlialequation

(3)

and the orthogonality condition I
J

b12

mwmwn dy=O (m#n) (4)
- tlt!l

=Mm (m=n) (5)

In ~ccordance with the Galerkin procedure for solving
differential equations, equation (2) is first substituted into
equation (1) to give, after use is made of equation (3),

alwl%wl+~qsmwj+ . . . = —m(awo+hlwl+ . . .) +F

(6)

Now if this equation is multiplied through by w., then is
integrated over the wing span, and use is made of equations
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(4) and (5), the following basic equation results:

J

bJ2

M,am+us9M,aB= Fwndy (7)-llp

which allows for the solution of the coefficients a. if the
applied forces. F are lmown. This equation appjie9 for the
translational mode n=O, for which case ~=0, as well as for
all the elastic-body modes. The quantity Mmappearing in
the equation is commonly called the generalized maw of
the nth mode.

I?or the present case of the airplane flying through a gust,
the force F is composed of two paxts: a part designated by
L, due to the v@ical motion of the airplane (iicluding both
rigid-body and bending displacements) and apart L, resulting
directly from the gust (this latter part is the gust force whi4
would develop on the wing considered rigid and nW@ne.d
against vertical motion). On the basis of a ,s$ri~ type of
analysis, these two parts are defined as follow: *

Q

stF=LO+L,=–; WV
J

ib [1—~ (t—7)]d~+; WV ‘ iqb(t-r)dr
o 0

-- ‘~8)

where -&=Ois taken at the beghming of gust penetration,
1—~(t) is a function (commonly referred to as the Wagner
function) which denotes the growth of lift on a wing following
a sudden change in angle of attack and for two-dimensional
incompressible flow is given by the approximation

v
[1–c#J(t)]A.m=l–0.165e -%~_o.335e -0.69

(9)

and ~(t) is a function (commonly referred to as the Ki.issner
function) which denotes the growth of lift on a rigid wing
penetrating a sharp-edge gust and for two-dimensional
incompre&ble flow is given by the approximation

[# (~]d.m=l–o.se-+ i–o.w-’:’
Figure 1 is a plot of equations (9) and (10).

An additional term which involves the apparent

(lo)

air mass
should be included in equation (8); this m&-term is inertial
in character and may be included with the structural mass
(see ref. 16) although it is”usually small in comparison. The
lift-curve slope a maybe chosen so as to include approximate
overall corrections for aspect ratio and compressibility effects.

The remainder of the analysis is restricted to uniform
sp$nwise gusts and the assumption is made that the response
will be given with sufficient accuracy by considering only
two degrees of freedom: vertical motion and fundamental
wing bending. On this baais, if w as given by the fit two
terms in equation (2) is substituted into equation (8) and
the resulting equation for F is substituted into equation (7),
the following two response equations result when n is set
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u

s, half-chords
~c+mm l.—Unsteady-lift functions (see eqs. (9) and (10)) whew for a sharpedge gust, the gust force j(8) =X(8).

equal to Oand 1, respectively: ‘

%%”=-f(~+%) J
[1–~ (t–,)] d~+ @ (t–7) dr

(11)
and ,
m, . &2Ml

— al+— H‘s,.s,..apVS apVS ‘=— o ~ G* al
)

[1–1$ (t–,)] dr+

s, ‘.
J3“ @.(t-~) dr .-

where (because of mode symmetry)

J

bJ2

s =2 C dy
o

J

bJ2

SI=2 ~ cmdy

J

bj2

S,=2 cwgdy
o

(12)-

(13)
.

Equations (11) and (12) may be put in convenient non-
dimensional form by introducing the notation

~ 2vt=—
c1

(14a)
or

2V
P— i-

@
(14b)

and
v

‘u=% %
(15)

where his the midspan chord of the wing and ?7is the maxi-
mum vertical velocity of the gust. With this notation,
equations (11) and (12) may be written I

J
JW4’’=-2 ; (%’’+@’)[l-@(8–u)]du+~$t@-a)da

(16)
and

(18)

and a prime denotes a derivative with respect to u. Equn-
tions (16) and (17) are the basic response equations in the
present analysis. The five parameters appearing in these
equations and given by equations (18) depend upon the
forward velocity, air density, lift-curve slope, and the air-
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plane physical chnmcteristica: the wing plan form, wing
bending stifhess, and wing mass distribution. Experience
has shown that variations in the physical characteristics
cause signiiicrmt variations in the first three of the five
parameters, while the last two vary only to a minor extent.
The first three are therefore the most basic parameters; ~ is
a relative-density factor, frequently referred to as a maw
pnmmeter, and is associated with vertical free-body motion
of the airplane; PI, similar to W, is the mass parameter
associated with the fundamental mode; and k, by its nature,
may be interpreted as a reduced-frequency parameter similar
to that used in flutter analysis.

It is significant to note that, if any one of the three quan-
tities %, zI, and u appearing in equations (16) and (17) is
specified or known, the other two maybe determined. Thus,
if the gust is known, the response may be determined or.
conversely, if either % or Z1 is lmown, the gust may be
determined. A useful equation relating q and 21 may be
found by combining equations (16) and (17) so aato eliminate
the integral dealing with the gust. The result is the equation

)s: (Z,’’ +X’Z,)+2 ~;–rl : z,” [1–f#(s-u)]du=J4y?@” (19)

which is used subsequently.
It may rdso be of interest to note that ~%”, in effect,

defines a frequently used acceleration ratio. From equa-
tions (15) and (14), the rigid-body component of the vertical
acceleration may be written

or, when expressed in terms of the incremental number of g’s,

An acceleration factor An, based on’ quasi-steady flow and
peak gust velocity is now introduced according to the
definition

An,W=~ pS~ ~

The r~tio ~ is thus found to be

:= M%”$

Where the gust shape is represented analytically and the
unsteady-lift functions are taken in the form given by equa-
tions (9) and (10), solutio,nof the response equations may be
made by the Laplace transform method, but such a solution
is more laborious than” desired. Therefore, a numerical
procedure which permits a rather rapid solution of the
equations %as been devised for the case of discrete-gust
encounter and is presented in a subsequent section. It may
be well to mention, however, that the response equations
are suitable for solution by some of the analog computing
machines,

Bending stresses.-The bending moment and, hence, the
bending stresses that develop in the wing due to the gust
may be found as follows: The right-hand side of equation

31385G&5~s

(1) defines the loading on the wing; suppose that this loading
is denoted by p, then

p= –mlb+l’

By use of equations (2) and (8) and the notation of equa-
tions (14) and (15), this equation becomes

~ (%3’’+ZI’’’WVUWVU~=—~ 4E
J

; (Z%J’’+z,%,)

[1–@(8–U)]d-5+~ /XV~~U’#(8-u)dU

where, as before, only the tit two deflection terms have
been retained. If the moment of this loading is taken about
a given wing station, say Yj, the following equation for
incremental bending moment at that station will result:

J

b[2

M,= PQ/-?h)il
~j

= 4VU
J

–— (M.O%’’+lMm,z<’) -apW ~(M.oa”+
f%

fMclzl’’)[l— I#)(s-u)](f U+;pvkfoo
J“

‘U’+(S—U) da (20)
o

where the M’s bearing double subscripts are first moments
defied as follows:

J

bll

J

W2
fMmo= m~—yj) dy M.o= C(y-yj) dy

Vj ~j 1

J

bJ2

J

b/2

M=,= mwl(y-yj) dy M.,= cm (y-yj)dy
Uj WJ ‘J

(21)

agd yj is the station being considered. Dividing equation

(20) by the quantity ~ PVUM% gives the following equation

which is considered to define a bending-moment factor Kj at
wing station yj

K,= “
: PWM.O

[1–o(=)l~+~: ; W-a)da (22)

The factir ~ PTT?M% may be regarded as the maximum

aerodynamic bending moment that would be developed
by the gust under conditions of quasi-steady flow and with
the wing considered rigid and restrained against vertical
motion at the root. The bending-moment factor Kj may
thus be seen to be the ratio of the actual dynamic bending
moment that occurs to this quasi-steady bending moment
and therefore may be regarded as a response or an alleviation
factor.

A more convenient form for the bending-moment factor
may be obtained by solving equations (16) and (17)

simubneoualy for the quantities
J

‘ ~“[1— +(s—u)]du and
o
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J

;
ZlflEl— @(s— U)]CZUand substituting these values into

o’
equation (22). Wlt,h these operations the following equation
remdts:

. KF “
; PvUM%

where
=dGn+ezl’’+h12zl (23a)

~=nrl—i
—lb-w
r12—r2

rl —r3
e=~

r, –r2p’–’1

h=- p,
and

M.,
. . r8=—

M%

(2.3b)

(24)

It is seen that, when bendimzmoments sre.beti determined,
three additiorial basic par~etem (eq:. (24)) ~ppear. The
similarity of Toand ql to ~ and ~1is to be noted; @t moments
of mases and areas are involved rather than masses and
areas.

Ileduotion to rigid ease.—It maybe of intw’est to show the
reduction of the response equation to the case of the air-
plane considered as a rigid body. Thus, if ZI is equated to
zero in equation (16), the following equation for rigid-body
response is obtained:

~qr”=—z
J

‘ @[l-&.)]&+jy w-u)~ (25)
o

If zI” is set equal to zero in equation (22) and use is made
of equation (25), the following equation for the bending-
moment parameter for the rigid-body csse is obtained

K,,=~–To)%,m (26)

where %,Wis the nondimensional acceleration of the airplane
considered as a rigid body.

SOLUTIONOF RFXJPONBEEQUATIONS

The oaae of dimrete-gust emounter.—li this section a
rather simple numericsl solution of the response equations
(16) and (17) is presented for the csae where discrete gusta
are suddenly encountered. The procedure is readily adapted
to either manual or punch-card-machine calculations.

The derivation proceeds on the basis that the response
due to a given gust is to be determined. The airplane, just
before gust penetration, is considered to be in level flight
and, hence, has the initial conditions that the vertical dis-
placement and vertical velocity are both zero. Th6se con-
ditions mean that ~, Zl, ~’, and Z1’ are all zero at s=O.
The gust force can be shown to start from zero and, therefore,
the additional initial conditions can be established tlat %“
and zI° are also zero at ~=0. By the numerical procedure,
solution for the response at successive values of ~ of incre-
ment e will be made and, for the case being considered, it is
found advantageous to solve directly for the nccelcrhtions
rather than the displacements. ‘s’

In order to make the presentation more compact, tho
following notation is introduced:

With this notation, equation (16) would appear simply as

p@=—2
J

~ (a+r1B)O(8–u)du+f(8) (28)

In accordance with numerical-evaluation procedures,” the
interval between O and 8 is divided into m equal stations of
interval cso that s=%w. The product of (a+rlf?) and 6(8–u)
is assumed formed at each station and, with the use of the
trapezoidal method for determining areas, the unsteady-lift
integral in equation (28) may be written in terms of values
of a and ~ at successive stations as follows, where the mth
station corresponds to the value 8:

J (
*(a+r#)8(8-u)du=e em_,a,+em-,a,+ . . . +0,%4+

0

in which 00, (91,. . . are, respectively, the values of the
l—I#Jfunction at 8=0, s=q . . . (m and I%do not appear
because of the initial conditions). With this equation,
equation (28) may be written at various valuea of s or at
successive valuea of m; the result, for example, for m= 1 is

poq= — 6(20~cx~+OOaJ—al (201191+OOf3Z)+fs

where ~1and ~z are the values of the gust-force integral at
8=c and t?=2e.
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The equations thus formed may be combined in the following matrix equation:

al

CYg

ag

.

.

%

+

1“
. . .

A

/%

I%

B.

which may be abbreviated

The simplicity of the matrices A and l?, and all square matrices to follow, is to be noted; the matr

f,

f,

f3

.

f.

(30n)

(30b)

.RS are triangular and
all elements in one column are merely the elements-in the previous column moved down one row. Thus, only the elements
in the first columus have to be known to define completely the matrices.

Now instead of considering directly the second response equation, equation (17), it is expedient to consider equation
(19). ~ccording to the derivation presented in appendix A, the value of z, at S=me may be approximated in terms of the
past-history value of Zl” by the following equation:

[ 1
Zlm=# (m—l)Bl+ . . . +2L%_2+&1~ /3= (31)

where PI, pa, . . . are the values of zI° at S=C, s=2e, . . . . If this equation is used to replace ZI in equation
(19) and the unsteady-lift integral is manipulated similarly to the integral in equation (2S), equations are obtained for suc-
cessive values of m which involve only the unlmowns a and B. The resultsmay be combined in the following matrix equation:

(32@
which may be written

[qlll=dal (32b)

The square matrix [a is seen to be similar to the other square matrices in that it is triangular with all the elements in
one column made up of the elements in the previous column moved down one row.

An equation in Ip] alone is obtained by substituting Ial from this equation into equation (3o) to yield
.

{:[A][q+[B]}lBl=[D]lBl=lfl (33)

which is the basic response equation relating p (that is, zI”) to the gust force. This equation represents a system of

.
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@ear simultaneous equations where the order of the matrix
is arbitrary; that is, the equations may be written up to any
desired value of s=me The solution for response can there-
fore be carried on as far as desired. Fortunately, the equa-
tions are of such a nature that simultsmeoussolution is not
required. & mentioned, each of the matrices [A], [1?], and
lm is triangular with all elements Oabove the main diagonal
and with all elements on the main diagonal of each matrix
~qual; therefore, the main diagonal elements of [D] will also
all have the same value and the elements above this diagonal
will be O. If each element on the main diagonal of [D] is
denoted by d, and [Dl] is the mati [D] with themaindiagonal
elements replaced by O’s, then

[D]=& [q+[DJ

With this equation, equation (33) may be written

Iihqmnded, this equation has the form

/%

/%

193

P4 =;

i%

.

.

.

fl

f2

f3

f4

f6

1
-2

“o

4

4

d,

d,

.

..

0

da

&

d4

.

0

(I2O

dada
. .
. .
. .

0

- 1%

1%

/93

/34

1%

. .

. .

. .

(34)

(35)

It can be seen that a step-by-step solution for the succe&ive
valuea of ~ may now be made; that is, ~1is solved for first,
then, with ~1established, &is solved for, and so on, m far as
is desired. With the value of Ifl] thus established, solution
for Icrlmay now be made directly from equations (32).
Valuea of the displacements% and z, may be obtained directly
from a and I?; z, may be obtained horn equation (31); and
% may be obtained from this same equation with P replaced
by a.

Some mention should be made with regard to the selection
of the interval c A rough guide to use in selecting c can be
obtained by considering A,whid appears as the characteristic
frequency in most response calcdaticms. The period breed

on this frequency would be T*=$ Experience has shown

that an interval in the neighborhood of 1/12 of this period
yields very good results (ii general Icasthan 1 percent error);
accordingly, a reasonable guide in choosing e would be the

z; Some convenient value near that given byequation cw—.”

this equation should be satisfactory; in genersl, it will %e
found that c maybe 1 or greater.

The procedure thus outlined provides a rather rapid eval-
uation of the response due to a prescribed gust. With the
response thus evaluated, the bending moment at any value
ofs or the complete time history of bending moment maybe
found by application of equations (23).

As a convenience in making calculations, a summary o
the procedure developed in this section has been made and
is given in appendix B. Chrves of the value of the gust
force, equation (27b), are also given for three diflerent types
of discrete gusts: sine gusts, sine’ gusts, and triangular
gusts.

As a lid word, it should be evident that, if response
vahw for either %“ or 21” are lmown, the gust causing this
rcs onse can be found b suitable manipulation of equations

J(30? and (32). Thus, “ %“ is Jmown, f? in equations (30b)
and (32b) may be eliminated to give the equation

{ [A]+m[B][C1-’}]al=lf I

Direct substitution of ~“ in this equation allows Ijl to be
determined. In most practical cases the seco~d term in
equation (30b) contributes only a small amount and may be
dropped with little resulting error in the gust force, The
equation for If] is then simply

[44]Ial=lf I

The case of continuous-sinusoidal-gust enoounter,-Of
primary importance in making continuous-turbulence studies
is the response of the aircraft to a continuous sinusoidal gust,
A reduction of the response equations to this caseis therefore
now made.

Where the gust is sinusoidal with frequency u, the quan-
tities u, %, and ZImay all be taken proportional to ek, where

&&$ and it may be shown that equations (16) and (19)

reduce to (eq. (19) is chosen in place of eq. (17) purely for
convenience)

~a’’=—2(a’+r,z19 (F+i@+; W’+w) (36)

: (ZI’’+VZI)+2 (:–rl) zl’(1’+iQ)=#oz3° (37)

where F(k) and (1(k) are the ti-phaae and out-of-phaae oscil-
latory lift coefficients used in flutter work and p(k) and Q(k)
are the similar in-phase and out-of-phase lift components on
a rigid wing subjected to a sinusoidal gush (see, for example,
ref. 17).

Now let the gust velocity and the motion be represented
by the real parts of .

%=zd+ (38)

where 20 and 21 may be complex. With these equations,
equationa (36) and (37) become

(39)

‘~”+4wwHY+’(5)Yl “=0
(40)
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whore

These equations yield

zo=(R4+~s4)(p+@
k’(Al+i.A~

–R,(P+@
‘= k’(A,+iA,)

&=-M-~

&=-rl ~

R8=/L0

‘f=%(*’)-c+”’)$

R,=R4+(X-3R’

&=~

S,=r, ~ 3

()
84= :_rl ~

&=RIR,-&&-R2R3

A2=RS4+R4SI-R3S1

(41)

(42)

(43)

in which R5 has been included because it appeam later.
With ZOand 2, established, the various response quantities
of interest may be determined. Those used frequently are-
(1) the rigid-body component of acceleration zo”, (2) the
accolmation at the fuselage center fine

Z“(o)=za’’+z,’’w,( o)=za” –azl”

where 6 is the absolute value of the fundamental-mode
deflection at the fuaelage in ternu.of a unit tip amplitude, and
(3) the bending-moment factor K,=dzo’’+ez,’’+ hz,,,, see
equation (23a). In accordance with equations (38), these
quantities may be written aa the real partsof

ZQt’=—.-p.@*
‘1

(44)

With the use of equations (41) and (42), these equations
become

(R4+iS~(P+i@e,ti
zo”=— Al+iA2

z“(o)=–
(R4+6R3+is4)(P+ @eB,

Al+iAz

Kj=– d(R,+iS~ (P+iQ) ~
A1+iA%

(45)
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The squares of the amplitude follow directly from these
equations and are listed below since they play a primary role
in many applications

(46)

(47)

(48)

It is worthwhile at this point to mention that a good approx-
imation exists for the quantity P’+ @ which appears in all
three equations. Thi9 quantity reflects the force on the
airplane due directly to the sinusoidal gust and for two-
dimensional incompressible flow is approximated with good
accuracy by the expression (see ref. 8)

P’+@=& (49) “

Two other quantities which are used frequently in appli-
cations are now pre9ented. The9e two quantitie9 are the
acceleration and bending-moment factor that apply when
the airplane is considered as a rigid body, that is, when it is
considered to have only the degree of freedom of vertidal
motion. The equation for rigid-body response can be
obtained directly from equation (39) by setting 21=0.
With the aid of the resulting equation it may be shown that
the square of the amplitude of the rigid-body acceleration is

‘20’’2=(%%.(50)

Through use of equation (26), the rigid-body bending-
moment factor may be written

lq’=(pr~’[zq”l’ (51)

As a dosing remark to this section, it may be said that the
computation of the response to a continuous sinusoidal gust
is actually quite an easy task, the amount of work involved
being very small in comparison with that involved in a
discrete-gust calculation. All that is necwsm-y is to evaluate
the response quantity of interest, equations (46) to (48),
through means of the mefficients given by equations (43),
with k taken equal to tie reduced frequency of the sinusoidal
gust under consideration. Because the computation is so
straightforward, no summary is given a9 in appendix B for
the case of discrete-gust encounter.

13XAMYLE

In order to provide an illustration and give an idea of the
accuracy of the present analysis, the response to a sharp-
edge gust of the two-engine-airplane example considered in
reference 16 was determined. The weight distribution over
the semispan, the wing-chord distribution, and the funda-
mental bending mode are shown in iigures 2, 3, and 4. The
frequenqy and deflection of the fundamental mode were
calculated by the method given in reference 18. The solu-
tion is made for a forward velocity of 210 mph and a gust
velocity of 10 ftjsec.
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The lift-curve slope used in reference 16 was 5.41; to be
consistent, the same vslue was used herein. Furthermore,
the unsteady-lift function used for a change in angle of attack
in the example presented in reference 16 w= given by the
equation

(1–@)4.,=1–0.361e-O”W’

rather than by equation (9). Thus, this equation was also
used herein. The gust unsteady-lift function used was that
given by equation (10).

The various physical constants and the basic response md
bonding-moment parametem are given in table 1; the values

Fusebge y
10,140lb Fuel

n
1,245 lb

Structumlweight2,3S0 lb 1

I?Irxmm2.-l%uispan weight distribution for the two-engine airplane
of example.

+

12 “

=

F-8 -
3
P
2

4 “

I I I I I I I 1 1
0 .2 .4 .6 .8 1.0

W@ stotim, *

IWmm 3.—Wing ohord distribution for airplane of example.

Lor /

I I I I I 1 I
-. 21 I I I

o .2 .4 .6 .8 10

wng stot”m, &

FIGUEWI4.—First-6ymmetrical-bending-mode deflection curve of
example airplane. QI=20.9 rdklz3/W30.

of the unsteady-lift function and the values of tho gust force
are listed in table 2. The matrices [.4], [B], and [a used
in the solution are given in table 3.

The solution for response is shown in figure 6 (a) where the
deflection coefficients m and a, in inches are plotted against
distance traveled in half%hords. The corresponding deflec-
tion quantities for the example given in reference 16 were
determined and, for comparison, are ako shown in the figure.
A similar comparison is made in figure 6 (b) for bending
stresses at the fuselsge and engine stations, stations O and 1
from reference 16. The agreement is seen to be good.

TABLE 1.—PHYSICAJ.I CHARACTERISTICSOF AIRPLANE
USED IN EXAMPLE

TV,m. ........................... .............. . ..............................
s.wft . . . .. ... .. .. .. .. . .... . ... .. ... .. .. .. ... ... . .. .. .. .. .. ... .. .. ... .. .. .. .. ... .
b,fz.z... ............................................................................
@h. ..... ...................... .... ............................................
daft-...... .-.-.-.--— ---------------------------------...................v f m .. . .. .. .. .. . . . ... .. .. ... .. .. .. .. .. .. .. ... ... .. .. ... . ... .. .. . .... .. ... . .
df* . . . . ... .. .. .. ... .. . ... .. ... ... .. .. ... .. ... . ... .. ... . ... .. .. .. ... .. .. .. .
{k;K---..-..-..---_--.- . ... ... .. ... .. ... . .. .. . ... .. ... .. .. .. .. .. ... ... .

.. .. ... .. ... ... .. .. .. ... .. ... .. .. ... ... .. .. ... .. .. ... .. .. .. .. .. .. ... .
a. . . . . . .. .. ... .. .. .. ... .. ... .. ... .. ... .. .. .. ... .. ... . ... ... . ... .. ... .. .. ... . ... . .. .
m---------------------------------------------------------------------------------
P.. . .. .. .. .. .. . ... .. .. .... .. .. . ... . ... . .... .. ... .. ... . ... .. .. ... . ... ... .. . .. .. .
L . . .. .. .. .. .. .. ... .. .. ... ... .. .. .. .. ... . ... .. ... .. ... .. .. .. ... .. .. .. .. .. ... .. .. ...

L------------------------------------------------------------------------------

J&%%%i------On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

$
--------..--.-—...-------..............................

m@sktim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mldne *tiL .................................................................
fammtim . . . . .. .. ... ... .. .. ... . ... ... . ... .. .. .. .. .. . ... .. ... .. .. ... . ... . ...
enginoatiL..: ... .. ... .. .. .. ... .. ... .. .. .. ... .. .. .. .. ... .. .. .. ... .. . .. ... .. .

atiOL..........................................................-;Ih*..*tioL ...........................................................
●Z hae denotesdht8uwfMIUnontd orb to 02i3wIMflti.

TABLE2.— 1–~ ORDINATESAND GUST-FORCEORDINATES
FOR SHARP-EDGEGUST,e= 1.0

m 6’”or (1-+)44

I
for#
o
.377
.b47
.em
.09a
.730
.771

%
.W

TARLE 8.—MATRICESUSED IN EXAMPLE

~ Ma&
-Mm ‘

LfW3 OL7W
LIMSOLtWS 647’S9
L7W9 L6S30 L03S OAiW
LS4% LiW3 L&3W LSM 64.7W
LS9ZJ3LS4Z3 L7WS L- L- 04.i99
LfL%lI 1.= LS4Z3 L7@.9 L6@0 LW OLiW
LQW3 LW-5 L.WM LM 1.70US L@ LEON 04.7W
Lf@5S LWB3 L9206 LS%3 LS4!B L715z3SL13JBILb3M &4.7G9

.L97E3 LWE3 LWW LXb30 L89!M LS4Z3 L70S3 LOW LbW9 04

alw’1
.32%0
.3.!27

:%%
.4128
.ma
.W1
.42s7
.4311

a lbw
.aSs
.?527
.2%0
.4019
.4r28
.4m
.mm
.4%7

o.13Q4
.a2%5
.3&27

:R!
.4rm
.4ml
.4m

B Matrix

alm’f
X2& O.lw

.Sm :%!

.4019 .3M0

.41!m .4019

.m .m

a 1394
.Zwl alw
.Wz7 ..S2Z0

.s827
:58 .5%0

c Mdriz

a 13U4
.bzm 0.1334
.Sm7 .S!Ea 0.1394“1

[

4.bw
L89S4 4.6?S7
Z’2446L3054 4.5357
&OR3 .2X46 LSM4 4.6?87
3.SS9 &~ !.L2446L3U544.6307
4.&3f9 3.SW 3073S 22445 L3W4 4.E367
h4M7 4.6949 2.=9 %07= fU446 L3QS44.=37
I%!KUl 64W7 4.0949 3.= 3.0736 !Z244b LW.54 4.EM7
7.CS24 &2LxM h4947 4.EW9 3-SW 9.073.522446 LW4 4.6347 17.s720 7.m24 O.zml h4M7 4.6949 &s!w 3.0736 2246 Law 4.LW7



RESPONSE TO DISCRETE AND CONTINUOUS GUSTS OF AN AJEPLAN33 HATCUVG WIND-BDNDING FLDXU311itTY 581

c’.-

a-
g
0

#jo

23
!i
ii

Pres4nt 0m31ysis

----- Refereme 16

(0)
I I I ! ! I I

Fuseloge slobn
---——- ___

~.-
,/

/“
/

/
/

/
/

/
/

/ Eng”m SfOt”~

/’

/’
/

/
/

t

/’

/

0.1secaul

//

o

(b)
-i I I I I I I I
o I 2

I
3 4 .5, 6 ;. 8 9 10

s, holf-cfwrds

(a) Displacements.
(b) stresses.

Fmum 5.—ResIxmMof exampleairplaneto a 10-ft/eeosharp-edgegust. VG21Omph.



582 RDPORT 1181—NATIONAZ ADVISORY COMMI’ITED FOR AERONAUTICS

mnmmcs ON mN.rsu3

Although the unsteady-lift functions for twc-climensional
unsteady flow are presented, the method is general enough
so that the unsteady-lift functions for finite aspect ratio, for
subsonic compressible flow, and for supersonic flow may be
used as well. (See refs. 3 and 17 to 22.)

Since the numerical method for the case of discrete-t
encounter is based on an integration procedure, it possesses
the desirable feature that a fairly large time interval may
be used and good accuracy still be obtained. As an accuracy
test, solutions of equations (16) and (17) were made for
several cases by the exact Laplace transform method as
well as by the numerical process, in which process the time
interval was selected according to the rule of thumb sug-
gested. When the results were plotted to three figures,
the difference between the two solutions was barely
discernible.

Additional bending modes could be included in the
analysis but this refinement is really not warranted. Some
calculations made with additional modes gave results which
diiTered only slightly fro~ the results obtained when only
the fundamental mode was used. The good agreement of
results obtained for the example with the results obtained
by the more precise method given in reference 16 also
illustrates this point. Furthermore, if additional degrees
of freedom are to be used, it would appear more important
to extend tie analysis to include wing tcmion and airplane
pitch and, also, to include the case of nonuniform spanwise
gusts Torsion undoubtedly becomes important for speeds
near the flutter speed, and pitch would appear important
for cases where low dampkg in pitch is present. This latter
point has been borne out by some investigations which show
that there is a marked increase in gust loads as the damping
in pitch is decreased. However, it is the intmt of this
analysis to treat the effects of wing bending flexibility and
it should be suiliciently satisfactory for speeds at least up
to the cruising speeds and for airplanes having good longi-
tudinal damping characteristics.

TREATMENTOF RANDOM CONTINUOUSTURBULENCE

The approach given in the previous section worh well
for gusts which are either isolated or which are of a con-
tinuous4numidal type. It also works for gusts which are
of a random-continuous nature, such as exist in the atmos-
phere. For this case, however, the approach is, not very
practical, first because it is questionable whether an appro-
priate or representative time history of atmospheric gust
sequence could be established, and second because for any
long gust sequence the amount of computational work
involved is prohibitively laxge. It is therefore desirable to
turn to other means for treating realistic turbulence condi-
tions, with the view of having a technique that has general
applicability and is mathematically tractable.

One such procedure which suggests itself for heating the
case of random continuous turbulence and which is at present
receiving much attention makes use of the concepts and
techniques of generalized harmonic analysis (see, for example,
refs. 6 to 10). These methods permit the description of the
random-atmospheric-turbulence disturbance and the amoci-
ated airplane response in analytic form by means of the

so-called “power-spectral-densit y function.” A brief review
of the technique is considered pertinent. If u(t) represents
a random disturbance or a system response quantity to this
disturbance (such as the atmospheric vertical velocity and
resulting structural response considered herein), then the
power-spectral-density function @(u) is defied as

q(o) = pm+T
Is

T 2
_T u(t)e-i”tdt (62)

where ~ is frequency in radians per second, and the bars

J

T
designate the modulus of the complex quantity u(t)e-iu’dt,

which is known aa the Fourier transform ~~ u(t). An
equivalent and more useful expression for @(u) can be
derived and is

.

J
*(@)=: “ ~(7) COS~~ dr (53)

o

where B(7) is the autocorrelation function deiined by

64)

A useful property of @(u) is that

J
m@(u) dco=Mean square==) =-R(O) =c# (66)

o

The quantity u% or /, the time m?an square, provides
a measure of Lhedisturbance energy per unit time and haa
thus been characteristically termed the power, as a carryover
from its early application in the fields of communications
and turbulence, where it often had the dimensions of powmr,
Thus, @(u) has, in turn, been termed the energy or
power spectrum. In this form, the element @(u) da gives
the contribution to the mean square of harmonic components
of u(t) having frequencies behveen u and u+du.

Now a particularly useful and simple relation ex%ts for
linear systems between the spectrum of a disturbance and
the spectrum of the system response to the disimrbance (see
refs. 8 and 23). This relation is

O.(0) =Oi(ti) T~(@) (66)
where

o.(u) output spectrum
‘%(@) input spectrum
T(m) amplitude of admittance frequency-response func-

tion which ~ defined as the system response to
sinusoidal &stnrbances of various frequencies

It is precisely because of this equation that the response
to a continuous sinusoidal gust was derived in the previous
se&ion. The equation indi@wa that the response at a
given frequency depends only on the input and the system
admittance at that frequency, which is plausible for linear
systems.

A significant point to note here is that, despite the fact that
continuous random disturbances are under consideration, the
response equation (56) turns out to be surprisingly simple
and easy to apply. This fortunate outcome is undoubtedly
one of the consequence of working in the frequency plane
rather th~ the time plane. Nevertheless, even though tho
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frequency piano is involved, it is still possible in particular
cases to determine a number of statistical characteristics of
the disturbance or response time histories which are of
interest. For example, the root-mean-square value u, which
may be obtained directly from the spectrum in accordance
with equation (65), provides a useful linear measure of the
disturbance or response intensity. Further, in the particular
case in which the function u(t) has a normal or ~aumian
probability distribution with zero mean, the probability
density is given by

‘b)-% ‘-”*
(57)

Also, S. O. Rice, in reference 24, has derived for the case in
which the disturbance function is completely Gaussian a
number of relations which appear useful in aeronautical
applications and which are particdmly significant for fatigue
studies. One of the more important expressions is for the
average number of peak values (maximums) per second that
am above a given value of u. For the larger values of u,
(my u>2u), the expression is

(58a)

whore

[s

m

1

1P
al= A (a) da (58b)

o

There is some indication, as described in reference 6, that
airplane gust loads may tend to have a normal distribution.
Hence, use is made of these equations subsequently in the
application to the flexibility studies.

As a schematic illustration of the application of equation
(66) to the problem of airplaneresponse to gusts, figure 6 has’
been prepared. The top sketch in this figure is the input
spectrum and, in this case, represents the spectrum of at-
mospheric vertical velocity. The frequency argument $2,
which is 21rdivided by the wave length L, is introduced in
place of u because gust disturbance are essentially space

\

INPUT chorocterizes the
atmosphere

Al,mean-sqare volue of

Ai gust velocity

FIQum 6.—Gur+response determination.

disturbances rather than disturbances in time. The second
sketch V(G?) represents the amplitude squared of a specified
airplane response, such as the airplane normal acceleration
(eq. (46)) to sinusoidal gusts of unit amplitude and of fre-

quency Q.
(

Nob that a, k, and Q are related as follows:

.=V.=2E. ) This function introduces the characteristics
“G!

of the airplane, the various modes usually showing up as
peaks such as the free-body ,and fundamental wing-bending
modes illustrated. The output spectrum @o(Q) is obtained
in accordance with equation (56) (this equaticm applies
whether the argument is u or Q) as the product of the first
two curves and gives, for example, the spectrum of normal
acceleration or the spectrum of stress, depending upon what
quantity is chosen for the frequency-response function. Tbi&
output spectrum indicabw the extent to which various fre-
quency components are present in the response, and, further,
it allows for the determination of various statistical proper-
ties of the response time history, such as are given by equa-
tions (55), (57), and (58).

CORRELATIONOF CALCULATIONAND FLIGHT STUDIES

A number of flight “and analytical studies have been made
which deal with the effect of wing flexibility on the structural
response of an airplane in flight through rough air (see refs.
10 to 12 and 25 to 28). The primsxy results of these studies
are sumrntid in this section. SpecXcally, the following
material is covered. The .sign.iiicmt results of flight tests
are given. Studies made on the basis of single- or discrete-
gust encounter are then reviewed and the extent of the
correlation with flight-test rcsdts is indicated. Finally,
some analytical work on the more realistic condition of
continuous-turbulence encounter is presented and corre-
lation with flight tests showm

FLEXIB~TYMEMURZS

From an analytical point of view, several measure9 may
be devised to indicate the extent to which flexibility effects
are present in any airplane. Generally these measures
indicate how a particular structural-response quantity (such
as acceleration) for the flexible airplane comparw with what
this response would be if the aircraft behaved as a rigid body,
a comparison of ~“ with ~,”, for example. For the correla-
tion pnrposea of the present report, however, the flexibility
measures have been confined largely to the two types used
in @ht teds. One of these measures involves a comparison
of the peak incremental accelerations developed at the fuse-
lage with the peak incremental accelerations at the nodal
points of the fundamental mode (see fig. 7), the latter accel-
eration being considered a close approximation to what the
acceleration would be if the airplane were rigid These two
accelerations are of particular interest because both have
been considered in the deductions of gust intensities from

@

-=4Ll=-..
Fmwrm 7.—Fuselage and nodal accelerations.
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measured accelerations; they are diilerent, in general, as are
all accelerations along the wing, because of structural flexi-
bility, particularly wing bending. The other flexibility
measure involves a comparison of the actual incremental
wing stresses with what these stresses would be if the
airplane were rigid. Since it is, of course, not possible to
obtain the rigid-body reference strains in ilight, some near-
equivalent strainmust be used. The generalpractice has been
to assumethat the rigid-body strains are equal to the strains
that would develop during pyll-ups having accelerations
equal to the accekrations that are measured at the nodal
points during the rough-ah fliihts, and this practice has been
followed hereim

FLIGHTSTODIES

In order to ‘establish what the numerical values of these
flexibility measures are in practical cases, flight tests were
made in clear rough air with the three airplanes shown in
iigure 8 and designated A, B, and O as shown. References
25 to 28 report some of these flight tats, These airplanea
were chosen because they were available and because they
were judged to be fairly reprbentative of rather stifl,
moderately flexible, midrather flexible airplanes,respectively.
In this flexibili~ comp&n, the factors which are considered
to signify an increase in flexibility effects are higher operating
speeds, lower natural frequencies, and greater mass in the
outboard wing sections. Figure 9 shows the type of accelera-

)

AnF

(a) (b) ,

(a) Airplane & (b) Airplane B.
)?IWJEE 8.—~ee-view sketches of W airplanes.
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FImJEII9.—AcceIeration measared fn clear rough air.
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tion results obtained from these flights. The ordinate refers
to peak incremental acceleration at the fuselage and the
abscissa refers to the peak incremental acceleration at the
nodal points. Although only positive accelerations are shown
in this illustration, a similar picture was obtained for nega-
tive acceleration values. The solid line indicatea a 1 to 1
corre~pondence; whereas the dashed line is “a mean hne
through the flight points. The slope of this line is the ampli-
fication which results from flexibility; thus, the fuselage
accelerations are 5 percent greater on the average than the
nodal accelerations for airplane A, 20 percent greater for
airplane B, and 28 percent greater for airplane C. It is to
be remarked that the picture is not changed much if given
in terms of strains; that is, if the incremental root straim
for the flexible case are plotted against the strains that would
be. obtained if the airplane were rigid, similar amplification
factors are found.

DISCRETE-GUSTSTUDE

In an attempt to see whether these amplification factora
could be predicted by discrete-gust studies, some calculations

were made by considering the airplane to fly through single
sine gusts of various lengths. The calculations were made
by the discrete-gust analysis presented previously. The con-
ditions used for speed, load distribution (yayload and fuel),
and total weight were similar to those used in the tlight teats.
time of the significant results obtained are shown in figure
10 (see ref. 12 for additional related results). The ordinata
is the ratio of the incremental root strain for the flexible
airplane to the incremental root strain that is obtained for
the airplane consideredrigid. The abscissais the gus@adi-
ent distance in chorlls, as shown in the sketch. The curves
indicate rLsignificant increase in the amplification or response
ratio in going from airplane A to B to C. It may be
remarked that the amount of mnplihdion is, in fact,
related to the aerodynamic damping associated with wing-
bending oscillations. This damping depends largely on the
mass distribution of the airplane and is lower for higher out-
board mass loadings. The curves thus reflect the succes-
sively higher outboard mass loadings of airplane B and
airplane C.

Airplane

I

I
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“Aer

c

— —— ———— ——————
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Fmum 10.—Strainampli50ationfor single-gustencounter.,..
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The important point to note about this figure is that the
general level of each curve is in good qualitative agreement
with the amplification vahms found in il.ight. Thus, the
1.o5 value for airplane A roughly represents the average of
the lower curve, tha 1.20 value for airplane B the average
of the middle curve, and the 1.28 value for airplane C the
average of the upper. curve: A more direct quantitative
comparison would be available ~ifa weighted average of the
calc~ated curves wuld be dermed by taking into account
the manner in which the gust+yadient distances are dis-
tributed in the atmosphere. No sound method is available
for doing this, however, and this overall qualitative wmpar-
ison will therefore have to stice.

Figure 11 shows what is obtained when Calculation and
flight results are wrrelated ‘i more detail. In this figure,
the straia ratio is plotted against the intarval of time for
nodal acceleration to go from the 1 g level to a peak value.
This interval, when expressed in chord lengths, is slightly
diiferent fkom the gust-gradient distance. The flight valueg
shown were obtaided by selecthig from the continuous
acceleration records a number of the more predominant
humps that resembled half sine waves and then treating
these humps as though they had been caused by isolated
gusts. The ,agreement seen between the calculated re@s
and the flight results is actually surprisingly good when the
complexity of the problem and the fact that the calculations
are for a highly simplified version of the actual situation are
considered. In contrast to the well-behaved single gusts
asaumed in the calculations, the gusts encountered in flight
are not isolated but me repeated and are highly irregular in
shape. Theke factors may well account for the higher ampli-
fications found ‘in fi.ight, CSptidy in the range of higher
valuea of time to peak acceleration; in this range it is to be
expected that the amplification eilects associated with th6
higher frequency components of the irregular gust shapes
are superposed on the amplification effects of the predomi-
nant gust length h lead to the higher effective values
observed.

FIGUREil.—Rough-air strain ampliihation for airplane C.
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From the results thus f= presentid, it may be concluded
that a reasonably fair picture of flexibility effects may be
obtained with the discre~gust approach. It is found to
give good overall qualitative agreement with flight-test
results and can be used to determine how one airplane com-
pares with another in respect to the relative extent to which
these effects are prwent. Detailed quantitative cordation
is nQt feasible, however, since the degree of resolution per-
mitted by the approach is limited. This is, of course, ti be
expectd in view of the limited and unrealistic description
of turbulence used.

CO~OUB-TURBIJLENCESTDDIE9
The procedure given in the section entitled “Treatment of

Random Continuous Turbulence” w= applied in order to
see what it would yield in the way of flexibility efFectsfor
the three airplanes used in the rough-air flight teats. The
spectrum chosen for atmospheric verticil veloci~ was that
given in reference 6. Bending stress at a station near the
root of the wing was chosen as the response variable, and
evaluation was made for flight conditions representative of
those used in the flight tests. ThesQconditions are indicated
in table 4, together with the ph~ical constants and basic
parametaa that apply. (It is remarked that the use of the
theoretical I.if&curv*slope value of 2T in place of more rep-
resentative values has no serious consequence herein since
the iinal results to be presented are in “aratio form which is
relatively insensitive to the lift-curve slope used.) Figure 12
shows the transfer functions that were obtained by means of
equations (48) and (51); for this evaluation the flutter co-
efficients for two-dimensional incompressible flow and an
amplitude of the sinusoidal input gust of 1 ft/sec were used.
The solid curve is for the flexible airplane and the dashed
curve, for the airplane considered rigid. Tlwe curwa show

<104

Rigid..---\_

I I I ,(o)

.1
Frequency, Q

quite dearly the diibrent bias that each airplane has toward
various frequency components of the atmosphere. The iirst
hump is associated with vertical translation of the airplane
and the second hump, with wing bending. The spoctm for
bendingstress response, obtained by multiplying tho
frequency-r~ponse curves by the input spectrum, of courm
show that the curve for the flexible caaeovershoots the curvo
for the riggdcase by an amount consistent with the frequency-
response curves. This overshoot is n reflection in the
frequency plane of the characteristics of the trmwient-
response curves shown in iigure 10. The area of the over-
shoot is a direct measure of the ampliiimtion in mean-squaro
bending s@ss that results from wing flexibility.

TABLE 4.—AIRPLANE LOADING, PHYSICAL CONSTANTS,
AND BASIC PARAMETERS
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(a) Airplane A. (b) Airplane B. (c) Airplane C.
FTISURE12.—Tranefer functions.
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In order to obtain an amplification or flexibility measure
more directly comparable to the values obtained from the
flighkteat results, the following procedure was used. Equa-
tions (58) were used to give curves of the type shown in
sketch 1 where the ordinate NP refers to the number of

A

----Flexitde

\

. — ___________ __

‘2

- stress .“ ,
SKETCH1.

stress peaks that occur per second above a given stress level
represented by the absciesa. k can be seen, one curve
applies to the flexible airplane, whereas the other is for the
airplane considered rigid. A convenient measure of +q
magnitude of flexibility effects can be found by taking the
ratio of the stress for the flexible caae to the stress for the
rigid case at a given value of NP (for example, the ratio of
the stress at point 1 to the stress at point 2). In general,
this ratio varies with stress level; it is highest at the lower
streams and with increasing s@ss decreases to a constant
value equal to the ratio of the root-mean-square stress for
the flexible airplome to the root-mean-square stress for the
ri@d airplane. For correlation with flight results, this ratio
waa determined for each of the three airplanes. The stress
level chosen was in the range of the higher flight-stiess values;
specitlcally, it waa taken equal to twice the mean-square
stress that developed.

Figure 13 shows a correlation of some of the results ob-
tained by the harmoni~anal@ approach with flight results.
The ordinate is the previously used strain ratio, that is, the
ratio of the peak incremental root bending strain for the
flexible airplane to the peak incremental root bending strain
for the aircraft considered rigid. The absciwa is the ratio
obtained from the harmonic-analysis theory, as explained in
the preced~ paragraph. The three circles are the results
for the three airplanes. As a matter of added interest, a
single acceleration point, which was the only one computed
and which applied to airplane B, has been inserted in the
plot as though the coordinates involved the ratio of fuselage
to nodal acceleration. The good cmrelation shown by this
plot is, to say the least, very gratifying; it shows that good
correlation may be obtained between ‘calculations and flight
results and, moreover, indicates that the harmonic-analysis
approach is a suitable method to use.

I.3

I /

Airplone C ~

1,2
I

Airplane B o
/

x
.’

1 / ‘(Acceledon)

/ -,

(–)Acf

Acr ~

1.0-

.9 -
T

I I I I I
o 1.1 1.2 1.3

Acf -

()
—.
A6r -

~ mw

FIcimm 13.-Strain amplillcation for continuous turbulence.

CONCLtiD~G REMARKS

The derivation presented hereiri is ~@tended’to provide a
convenient e*eering ‘method for taking into account wing
bending flexibility in ca.lculathig the response of an airplane
to either discrete or corithiuou%inusoidal gusts. The
method is believed to be well suited foi fiakiii.g trend studies
which evaluate, for example, the effect on response of such
factors as mass distribution, speed, and altitude. It is not
intended to apply for speeds ne.m the flutter speed or for
airplanes which have poor longitudinal damping characteris-
tics; for these cases an extension to include wing torsion and
airplane pitch would be desirable.

As regards the calculations and flight studies that were
made for three airplanes to determine the manner in which
gust’ loads are magnified by wing fltibili~, the followhg
remarks may be made. These studies indicate that an ap-
proach based upon single-gust encounter can be used to
evaluate the way in which one airplane compares with
another in respect to the average of these flexibility effects.
This discrete-gust approach also shows overall qualitative
correlation with flight results; however, it does not permit
detailed resolution of the flexibility effects, and hence direct
quantitative correlation is not feasible. A more appropriate
approach appears to be one which considers the continuous
random nature of atmospheric turbulence and which is based
on generalized harmonic analysis. Not only does it permit
airplanes to be compared with one another in detail but it
also provides good quantitative correlation with flight
results. It therefore appeam that, through use of this
continuous-turbulence approach, a suitable means is aflorded
for determining the magnitudes of flexibility effects. More-
over, many usefulramiiicatiorw,suoh as application to fatigue
studies, are provided as well..

LANGLEy &RONA~Cu LabOratOry,
NATIONAL ADVISORY COU~EE FOR AERONAUTICS, .

LANQLFIY I?IELD. VA., March d, 1964.



APPENDIX A

DERIVATIONOF EQUATIONRELATINGDISPLACEMENTTO PREVIOUSSUCCESSIVEVALUESOF ACCELERATION

In this appendix, a derivation is given of equation (31)

which give9 the value of displauynent in terms of successive

past-history values of acceleration. Suppose that the sec-

ond derivative (acceleration) of a function is approximated

by a succession of straighbline segments as shown in sketch 2

z- Z“m

—e—

s
m- I m

sFmTcE 2.

where the segments cover equal intervals e of the abscissa 8
and the initial condition that %“ = O is assumed to apply.
If a dummy origin is now considered at the station m – 1,
the segment between stations m – 1 and m may be repre-
sented by the equation

~f= .#t=_l ,-Z“m—z’’m-l g
E

Two successive integrations give the relations for Z’m and

2. as follows:

“#’m–d’m_l
Z’=Z’’m_18+ 2. #+z’.-,

2=2” _l f+z’’-l-lm ~ 6E d+z’.-l+%n%1-1

where the constants of integration Y.-l and %-1 (iitial
conditions for the interval) have been introduced. If 8 is
set equal ta.6 in thwe two equations, the following equations
result:

“.=; (Z’’m+z’’,)+z+,’.-, (Al)

%=: 2’.< Z“.-,+z’=-,e+z+, (A2)

58s

From these two equations the values of z’= and Z. at any
time interval may be given in terms of the second deri+ativo
at all previous time intervals. For example, with initial
conditions of Z“o= z’0= O, equation (Al) becomes for m= 1

(A3)

and for m=2

2’2=; (Z’’,+ Z’’I)+*’*

C%mbining @ equation and equation (A3) resuha in the
relation

“’=+’’++d”)

This process may be carried through for each of the timo
stations to yield the following general equation for z’.:

(
z’== .S 2“1+ ‘“9+ ‘“3+ . . . + L+; drm

)
(A4)

which, of course, is the trapezoidal approximation of the
area under the Z“-curve. Equation (A2) for Z. may be
treated simikdy, and it is found that the general equation
for Z. ~ay be writtan

[ 1
%=? (m—1)2’1+(m—2)z”a+ . . . +2z’’m_z+z’’._1+~ z“*

(A5)

This equation thus gives the displacement at any time sta-
tion in terms of the. accelerations at all previous tinm
stations.

It maybe noted that, if higher-order segments (parabolic
or oubic) ,had been used instead of straight-line segments to
approximate the second derivative, equations similar in
form to equations (A4) and (A5) would also result. For
most practical purposes, however, the accuracy of equation
(A5) is suiliciently good as long as the interval .sis chosen so
that the straight-line segments roughly approximate tho
second derivative.



APPENDIXB

SUMMARYOF CALCULATIONPROCEDUREFOR DETERMININGTHE RESPONSETO DISCRETEGUSTS

AE a convenience, a summary of the basic steps necessary

for calculating the response of an airplane to a discrete gust

is given in this appendix.

For accelerations and displacements:

(1) Wh$h the use of the fundamental mode, wing plan

form, and mass distribution, calculate the quantities M, KI,

X, T,, and ra as given by equations (18).

(2) Choose the time interval G A convenient rule of

thumb is e=*J but for most cases e= 1 should give satis-

factory results.

(3) Determine valuea of the unsteady-lift function 0= 1 –+

at successive multiple intervals of c. (See fig. 1.) Mso
determine corresponding values of the gust-force integral

j(8), equation (27b). As an aid, curv~ for j(s) are presented
in figure 1 for the sharp-edge gust and in figure 14 for variou5
length sine gusts, sine’ gusts, and triangular gusts. (The

curves in fig. 1 have been obtained from eqs. (9) and (10).
These approximations, although rather accurate for the
lower values of s, are noted to moss; actually, they should
not cross and are known to have the same asymptotic
approach to unity.)

(4) From the following definitions:

Al=po+do

Am=2&m-1 (m>l)

B1=r1d70

, Bm=%ledm.l (m>l)

()Cm=(m–l) ~ &i’+2 ~rl d7m_1 (m>l)

Lo

.8

.6

g

g

2
.4

.2

0 5 10 15 20 25 30
s, I?df- CIKIrds

(a) H=2.5 chords.

FIQUFLD14—Value of the @st-force integral j(s) =1 $ 40(8–u)d. for three gust shapes.
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set up the following matrices:

[A]=

[B]=

“A,

A,

As

A-4

,.

‘B,

B,

B,

B,

..

B,

B,

Ba

A, A,
. .

. .

. .

B,

B, BI
. .

. .

. .

.

..

..

S, half-chords

(b) H= 5 ahords.

FIGURE 14.-C0ntinued.

[a=

‘c,

C2-c,
Ca c, c,
c, ~ (?, (?,
. . . . .

L
?.... . .“. .-

Then, calculate the matrix
,-

~ [D]=: Ml [d+[Bl
-.

(5) Solve for the values of f? (which equals z,”) from

equation (3;) by the method outlined after equation (33),

(See eq. (34).) --The values of ZI and a (which equals %“)
can then be c@ilated from equations (31) and (32).

For bending moment:
(6) In order to compute bending moment, determine TS,

no, md YII as given by equations (24), where Mm, Mml,M,o,
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10
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.6
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3
w

4

.2

0
s, hoif-cimrds

(c) H=7.5 ohords.
Fmwm 14.-Continued.

and M., in these equations depend on the particular wiig
station being considered and are given by equations (21).

(7) Determine bending moment by use of equations (23)
with the values of response already established. This
equation may be applied directly to any desired he value.
hbximum bending moment usually occure very close to the
time when ZIis a-mminmm. .
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